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Computer simulation of A2/B2 second-order phase
transition based upon the Khachaturyan diffusion
equation

A. M. MEBED, T. KOYAMA, T. MIYAZAKI
Department of Materials Science and Engineering, Nagoya Institute of Technology,
Nagoya 466, Japan

A computer simulation, based on the Khachaturyan diffusion equation, is presented to

develop the kinetics of the morphological evolution of the A2/B2 second-order phase

transition in a binary solid solution. The evolution of the occupation probability, as

a function of composition, shows a good similarity to the actual micrographs experimentally

obtained based on the macroscopic composition gradient method. These results are used in

parallel with the results of the evolution of the long-range order parameter as a function of

the ageing time, to verify a new concept of the ordering behaviour inside the ordered phase.
1. Introduction
Since the idea of the order—disorder phenomenon in
a solid solution was proposed by Tamman [1] in 1919,
it has attracted much attention from physicists as well
as metallurgists. It is known that if the temperature
variation is in a range entirely below the critical order-
ing temperature, a substantial number of alloys are
ordered, while if it is entirely above the critical temper-
ature, the alloy is disordered. By ordering, the lattice
sites can be grouped into sublattices, each of which is
occupied predominately by one kind of atom. In the
disordered state, no such grouping is possible, i.e. each
sublattice is occupied by the various constituents at
random [2]. When the alloy is ordered, a non-zero
correlation exists between the kind of atom on a given
site and that on a distant site, the measure of this being
the ‘‘long-range order parameter’’. In a disordered
alloy, a correlation, called the ‘‘short-range order
parameter’’, still exists between the kinds of atoms at
sites close to each other. Thus, by controlling the
long-range and short-range order parameters, the pro-
cessing of technologically advanced materials can be
controlled.

From this point of view, many works have dealt
with this phenomenon, some experimentally, some
thermodynamically and yet others theoretically.
While the thermodynamic approach allows close ex-
amination of the possibility of the appearance of the
metastable phase, as well as the phase-stability limits
under given thermodynamic conditions on the phase
diagram (in this field and especially for the second
kind of ordering, see, for example, the work of Allen
and Cahn [3], Kubo and Wayman [4], Semenov-
sakya [5] and Soffa and Laughlin [6]), the values of
such properties are strictly independent of the path by
which the equilibrium state is approached. This leads
to the requirement of a kinetics model, and conse-
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quently, various models have been proposed, such as
the chemical reaction-rate equation [7], the Mar-
kovian-type stochastic equation [8], the master equa-
tion approach [9], the Chan—Hilliard-type kinetic
equation [10], the path probability method (PPM)
[11, 12], and others.

The kinetics of the disorderPorder transition in
binary alloy, was recently studied by Fultz [13] using
Mote Carlo simulation and the path probability
method, by Chen and Simmons [14] by the cluster
activation method, and by Sato and co-workers
[11, 12] by the vacancy mechanism of atomic migra-
tion using the path probability method of time-depen-
dent cooperative phenomena, and choosing the pair
approximation. An experimental study of the thermo-
dynamic behaviour of the domain walls when ap-
proaching the order—disorder transition from below,
was performed by Loiseau et al. [15].

We were interested in studying this process theoreti-
cally, according to the Onsager-type diffusion equa-
tion (developed by Khachaturyan and thus called the
Khachaturyan equation) with the concentration wave
formalism [16] to describe the kinetics of a second-
order phase transition from the A2 disordered phase
going through the B2 ordered phase. The validity of
the application of that equation to describe this pro-
cess with all its characterizing features and investiga-
tion of the temporal structural transformation of the
morphological evolution during diffusion-phase
transition in the binary solid solution were also
studied.

2. Calculation method
The analytical approach and definition of terms were
developed previously [17—19]; brief details are given
because it is just a tool to approach our goal.
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The kinetic equation used for calculating the phase
transformation is the phenomonological Onsager’s
equation. In this equation, the time evolution the rate
of occupation probability, n (p, t), for solute atoms to
be at a crystal lattice site, p, at time, t, is proprtional to
the thermodynamics driving force, is given by

dn(p, t)

dt
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where ¸ (p!p@) is a matrix of kinetic coefficients
which represents the diffusion from site p to p@ during
unit time, R is the gas constant, ¹ is the temperature,
and c is the solute atom composition. The internal
energy, F, is represented by the phenomenological
expression
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where p is a position vector, ¼[p@!pA, ¹] is the
interaction energy between atoms at interatomic dis-
tance (p@!pA).

Substituting the derivative of Equation 2 into Equa-
tion 1, followed by Fourier transformation, gives
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k is a wave number of the Fourier wave, N is the
maximum number of k, b"2p/¸ where ¸ is the length
of the calculation region.

The concentration wave formalism for the second-
phase transformation is

n(p)"c#cg exp(ikbp)

"c#cg cos[p(m#n)] (8)

Substituting Equation 8 into Equation 2 gives an
expression for F as a function of c, ¹ and g. Minimiz-
ing it with respect to g taking into consideration that
gP0 at the disordered phase, we can obtain the
phase diagram of the order—disorder transition line
represented in Fig. 1.
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Figure 1 The stable order—disorder transition line of the second
kind; (j) calculation points at ¹*"0.23, (w) simulation points at
¹*"0.2 for Fig. 3.

The initial disordered distribution of the solute
atoms is described by an occupation probability pro-
file, (p, t), with a very small random number. The
progress of c (p, t) with ageing time can be obtained by
using the Euler technique

nJ (k, t#*t)"nJ (k, t)#[­nJ (k, t)/­t]*t (9)

3. Simulation technique
To describe the kinetics of ordering, the model of the
nearest neighbour may be ambiguous, and it is neces-
sary to consider the higher neighbour interactions
[20].

A binary alloy on a two-dimensional square lattice
with first, second and third-neighbour pairwise inter-
actions is used, where the interchange energies are
selected as w

1
"1.0, w

2
"!0.8, w

3
"!0.6. The in-

terchange energies are arbitrarily chosen with the only
requirement that they produce a two-phase field of
ordered and disordered phases [21].

By using the kinetics coefficients of elementary dif-
fusional jumps to the nearest and the next-nearest
neighbours sites — this selection makes it act as a snap-
shot, with a feature characterizing the second-order
phase, as is shown later —
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because it is taken into consideration that
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where the definition and the value of ¸
1
and ¸

2
are the

same as those selected by Wang et al. [22].

4. Results and discussion
4.1. Snapshot
To test the snapshot property of Khachaturyan’s
equation, we made the initial condition of the occupa-
tion probability close to 0 or 1, only. Accordingly, its



time development produces the results represented in
Fig. 2. At t*"0.0 (Fig. 2a), a completely disordered
state exists, with the existence of a short-range order
clearly apparent in the figure. At t*"0.1 (Fig. 2b), the
cooperative phenomenon occurs where the formation
of the ordered domains characterizes the presence of
the second—order phase. With increasing ageing time
(Fig. 2c, t*"0.3), coarsening of the antiphase do-
mains occurs and the domains come close to each
other, followed by a coalescence process giving larger
ordered domains. At this point the ordering process is
completed, as shown in Fig. 2d, t*"1.0. The total
area now consists of ordered domains with antiphase
boundaries (APBs), but the APBs still have a high
curvature. For example, if we follow a particle of
circular shape in Fig. 2d, we find that it does not
shrink because of the increase in the free energy of the
system, but it moves closer to other APBs, making
contact at some point. This causes the circle to break
and open at this point, as shown in Fig. 2e, t*"1.6.
With increasing ageing time, a simple movement of
APBs, which have a high curvature, occurs for further
reduction in the energy of the system (Fig. 2f, t*"2.2).

4.2. The competition of ordering with the
composition

Because the disordered state is quenched below the
ordering transition temperature, we expect ordering to
occur, but how does the kinetic of ordering behave as
a function of composition?

Fig. 3 shows our simulation at a reduced temper-
ature (¹*"0.2) with the same ageing time for the
computational cell 128]128. The different grey levels
represent values of the function n (p) at each lattice site,
a completely black square represents n (p) close to 1,
and a completely white one possible n (p) close to 0.

The first point is represented by point ‘‘a’’ on the
phase diagram (Fig. 1) where the composition
c"0.27 just outside the ordering line. This represents
a completely disordered state with an occupation
probability n (p)"c#d where d is a random noise
between !0.002 and 0.002, i.e. it is close to the
average composition, with g"0.0, Fig. 3a.

Fig. 3b represents the simulation of point ‘‘b’’ inside
the ordered phase and close to the transition line
(c"0.29) on the reduced phase diagram. It clearly
shows that the configuration consists of ordered do-
mains with a small area at the centre having a high
LRO parameter surrounded also by an ordered area
with a gradient LRO parameter. On going away from
the centre, the LRO parameters become smaller, van-
ishing at the edge of the domains to form the APBs
which have a thickness slightly larger than that for the
stoichiometry and is also shorter.

With a small increase of concentration (c"0.3,
point ‘‘c’’, Fig. 3c) the ordered domains become close
to each other, making the thickness of the APBs
smaller than that of the former case, and approxim-
ately the same as the stoichiometry. In addition, the
ordered area, which has a high LRO parameter, in-
crease, causing the area of the gradient value of LRO
parameter to decrease. At c"0.35 (point d, Fig. 3d),
the thickness of the APBs is the same as for the
stoichiometry and the value of the LRO parameter
becomes zero more sharply and thus makes all the
Figure 2 Time development of the ordered domains calculated for a computational cell 256]256, where the initial condition is selected for
n(p) to be close to 0 or 1 for each lattice point. (a) t*"0.0, (b) t*"0.1, (c) t*"0.3, (d) t*"1.0, (e) t*1.6, ( f ) t*"2.5.
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Figure 3 Computer simulations at different compositions at ¹*"0.2 for the same ageing time for a computational cell of 128]128; the value
of the occupational probabilities n(p) at each lattice site is shown grey areas, with the darkest for n (p) close to 1.0 and the lightest for n(p) close
to 0.0. (a) c"0.27, (b) c"0.29, (c) c"0.30, (d) c"0.35, (e) c"0.40, (f ) c"0.50.
ordered domains have approximately the same or-
dered parameter. Subsequently, and for the remain
concentrations up to stoichiometry, the same behav-
iour occurs. Points ‘‘e’’ and ‘‘f ’’ in Fig. 3 show the
simulation for two points at c"0.4 and the
stoichiometry c"0.5, as examples. At this concentra-
tion, the only difference is in increasing the area of the
large-order domains at the expense of the small ones,
which leads to the disappearance of the short APBs.

The morphology generated here shows a good sim-
ilarity to the experimental transmission electron
microscopy (TEM) observation of the ordering system
of a binary alloy Fe—Al, which is based upon the
macroscopic composition gradient method. In this
method, a sample of Fe—50 at % Al was prepared by
arc melting. The specimen was melted on a cooled
pure iron in the same way. A sample, cut vertically
through the Fe/Fe—50 at% Al interface, was aged at
1023 K for a long duration inside an evacuated silica
tube. It was then prepared for electron microscopy
after the quenching process. Details of this experi-
mental method will be published in a separate paper
[23]. Fig. 4 shows a dark-field image of a sample
prepared by this method.

As an application of Fig. 3, the long-range order
parameter is calculated according to Equation 8 at
each lattice site. The result is represented in Fig. 5,
which gives an explanation of Fig. 3, and accordingly,
the ordering kinetics. Where the value of the LRO
parameter, Dg D , is taken as a function of composition
for the same ageing time (t*"4.0), we can divide this
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figure into four parts. The first part is the disordered
area which has zero LRO parameter. The second part
begins approximately at the transition line where the
LRO parameter just crosses the transition line and
increases sharply with a small increase of the concen-
tration (this part represents the beginning of the co-
operative phenomenon with the coarsening of the
antiphase domains boundary). The third part shows
an increase of the LRO parameter but smaller than
the second part, and represents the coalescence of the
order domains and the contraction of the phase
boundaries. The fourth part is where the LRO para-
meter seems to reach to an equilibrium value, where
with increasing concentration, a slight change occurs
in the value of the LRO parameter, caused by the
movement of the APBs.

For longer ageing times, the same behaviour occurs
at t*"20.0, except for the shift of the starting point of
ordering to a somewhat lower concentration.

The LRO parameter is also taken as a function of
concentration at different ageing temperatures
(¹*"0.2 and ¹*"0.23). At ¹*"0.23 (Fig. 6) the
same behaviour occurs as for the case of ¹*"0.2
with some decrease in the value of the LRO para-
meter.

4.3. The competition of ordering
with ageing time

The domain boundaries completely vanish at equilib-
rium, but it is possible, in some cases, to produce



Figure 4 Microstructure of a composition gradient alloy in the Fe—Al system, aged at 1023 K for 86.4 ks.
Figure 5 Composition dependence of the LRO parameter at differ-
ent reduced times for ¹*"0.2: (*) t*"4, (d) t*"20.

Figure 6 Composition dependence of the equilibrium LRO para-
meter at different ageing temperatures and the same ageing time: (d)
¹*"0.23, (s) ¹*"0.2.
a metastable structure in which the domains persist
for long periods [20] and the structure of highly or-
dered antiphase domains is analogous in many ways
to a polycrystalline aggregate of strain-free grains.

For a clearer interpretation for the kinetics of order-
ing, the LRO parameter was developed for two cases,
one at a composition near to the transition point and
the other at stoichiometry, as a function of ageing time
at a reduced temperature, ¹*"0.2, for a computa-
tional cell of 256]256 lattice sites.

4.3.1. At stoichiometry
Fig. 7 shows the growth of the ordered domain with
ageing time. The initial configuration at t*"0.0 is
completely disordered with an occupation probability
of :0.5 and Dg D+0.0. With increasing the ageing
time and at t*"0.6, the behaviour characteristic of
the cooperative phenomenon is seen, characterizing
the second-order phase transition (Fig. 7b). As first
pointed out by Bragg [24], the superlattice, which has
only two types of antiphase domains (e.g. B2 struc-
ture), cannot exist as aggregates of small domains.
Accordingly, the same type coalescence to form larger
domains, which coarsen, and the domain boundary
contracts leading to a further reduction of the dis-
ordered area and consequently increasing the ordered
area. This process is relatively rapid, during which the
free energy decreases continually. Thus the co-opera-
tive phenomenon occurs, and, consequently, the co-
alescence of the ordered phase domain and the forma-
tion of the antiphase boundary already attained at
t*"0.8 as in Fig. 7c. In Fig. 7d the equilibrium
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Figure 7 The temporal evolution of the LRO parameter for a computational cell of 256]256 lattice sites, at c"0.5 and ¹*"0.2; the value
of the LRO parameter (g) at each lattice site is shown by grey areas, with the darkest for g close to 0.0 and the lightest for g close to 0.9.
(a) t*"0.0, (b) t*"0.6, (c) t*"0.8, (d) t*"1.4, (e) t*"4.0 (f ) t*"10.0.
configuration is seemingly attained, so the structure
subsequently changes more slowly and the reduction
in the free energy is obtained by movement of the
domain boundaries. As a result of this movement,
larger domains grow, small ones shrink and each
boundary tries to straighten rapidly, so as to give
a structure of a few large domains extending right
across the crystal, as shown in Fig. 7e and f.

It should be noticed that the LRO parameter is
distributed homogeneously all over the ordered do-
mains and that the domains are very close to each
other, making the antiphase domain boundary very
thin.

4.3.2. Near the transition line (c"0.29)
Fig. 8 shows the evolution of the LRO parameter for
c"0.29. Fig. 8a, t*"0.0, shows a completely random
distribution of atoms with LRO parameter K0.0. The
order domain begins to appear with a small number
after long times compared to the case of
stoichiometry. For the second-order phase transition,
this is referred to as a critical slowing down phenom-
enon. The domains have the highest LRO parameter
at the centre which decreases gradually to reach zero
at the APBs, and is wider than that for the
stoichiometry case, see Fig. 8b, t*"2.6.

Contrary to the case of decomposition, where the
LRO parameter annihilate predominantly at the APB
[18] causing the congruent ordered domains to con-
tract and the disordered domain to expand, here the
5802
LRO parameter relaxes from the centre towards the
APBs, leading to the formation of ordered domains,
with an approximately stable value at the centre, de-
creasing gradually to zero at the APB. This relaxation
of the LRO parameter causes the ordered domains to
become closer, while the APBs are further apart than
in the case of stoichiometry (Fig. 8c, t*"3.0).

At t*"5.0 (Fig. 8d), the equilibrium state seems to
be attained, and the configuration consists of an or-
dered domain with an LRO parameter with a stable
value for an area at the centre, decreasing gradually
towards the APBs which did not suffer any change in
thickness.

Subsequently, for long ageing times (Fig. 8e and f,
¹*"10.0 and 25.0), a simple movement of the APBs
causes further reduction of the free energy.

This behaviour is in good agreement with the ex-
perimental work of Loiseau et al. [15]. They studied
the transition between the B2 and DO

3
phases of

Fe—Al using transmission electron microscopy
through in situ heating experiments.

As an application, the value of the LRO parameter
as a function of ageing time for two different concen-
trations, one at stoichiometry and the other close to
the transition line, is represented by Fig. 9. This figure
clearly shows that the kinetics of ordering at the two
different concentrations is quite different in many as-
pects:

(i) at stoichiometry, ordering occurs at an earlier
time than that for values of c close to the transition



Figure 8 The temporal evolution of the LRO parameter for a computational cell of 256]256 lattice sites, at c"0.29 and ¹*"0.2; the value
of the LRO parameter (g) at each lattice site is shown by grey areas with the darkest for g close to 0.0 and the lightest for g close to 0.6.
(a) t*"0.0, (b) t*"2.6, (c) t*"3.0, (d) t*"5.0, (e) t*"10.0 (f ) t*"25.0.
Figure 9 Time dependence of the LRO parameter at different com-
positions for ¹*"0.2: (d) c"0.29, (j) c"0.50.

line. This is the critical slowing down phenomenon
which occurs before significant ordering. It was found
that for, c close to the transition line, ordering starts at
about 2.4 units of reduced time, while it is at only
about 0.5 units of time for stoichiometry;

(ii) ordering at stoichiometry occurs between
t*"0.5 and t*"1.0 while for c close to the transition
line it occurs between t*"2.2 and t*"4.0; after that,
evolution of the occupation probability corresponds
to coalescence and coarsening of ordered domains,
making the LRO parameter for the two cases approx-
imately stable, with some increase corresponding to
the simple movement of the APBs;

(iii) in the stability region, the value of the LRO
parameter for values of c close to the transition line is
smaller than that for the case of stoichiometry, be-
cause the antiphase domain boundary for the first case
is somewhat wider than that for stoichiometry, mak-
ing the ordered domain area near the transition line
smaller than that at stoichiometry. In addition, the
LRO parameter has a gradient value through the
ordered domains for values of c close to the transition
line (the small vlaue at the APBs increases on going
towards the centre of the ordered domains) while it is
approximately the same all over the ordered domains
at stoichiometry.

4.4. The competition of ordering with the
transition temperature

For the sake of comparison, the long-range order
parameter was studied as a function of the transition
temperature, where the critical temperature of order-
ing, ¹*

#
, is determined at c"0.5 according to the

equation

¹*
#
"gNA2ln

1#g

1!gB (12)

The plot of the equilibrium LRO parameter as a func-
tion of the ¹/¹*

#
, calculated from the mean of the

Khachaturyan equation, together with the value cal-
culated according to the Bragg—William approxima-
tion and the Bethe approximation [25], is shown in
Fig. 10. The LRO parameter at first does not change
with increasing temperature, then decreases gradually,
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Figure 10 Equilibrium LRO parameter as a function of temper-
ature. ( · · — j — · · ) Bragg—Williams, ( —d— ) present calculation,
( 2 @ 2 ) Bethe.

but reaches zero more abruptly. Consequently, its
complete disappearance is marked by a second type
of phase transition, because it is known that the type
of transition can be correlated with the abruptness
of the disappearance the long-range order parameter.
From the figure we can see that Khachaturyan’s kinetic
model produces a thermodynamic description in be-
tween the Bragg—William the Bethe approximations.

We believe that the Khachaturyan-type diffusion
equation, albeit with more tedious work to obtain the
composition dependency of the kinetic coefficients,
can be applied to simulate the ordering of the real
alloy system, because the equation has already been
successfully applied to the case of phase decomposi-
tion inside the spinodal phase [19] for the real alloy
system.

5. Conclusions
1. Khachaturyan’s diffusion equation can success-

fully describe the process of ordering for a disordered
phase annealed within a single-phase field of an or-
dered phase in a phase diagram. This process exhibits
a behaviour characteristic of a co-operative pheno-
menon characterizing the second-order phase trans-
formation, going through order domain coalescence,
antiphase domain coarsening and finally a simple
movement of the APBs.

2. Time development of the long-range order
(LRO) parameter, according to the concentration
wave formalism at different concentrations for the
same temperature or vice versa, describes the kinetics
of the ordering. Inside the ordered region, it is interest-
ing to observe that a phenomenon, called the critical
slowing down, with further symmetry breakdown, oc-
curs. Near the transition line, the cooperative phe-
nomenon takes some time to appear, followed by
a sharp increase of the LRO parameter up to the
equilibrium value; on going away from the transition
line, the appearance time for the cooperative pheno-
menon becomes shorter, the increase in the LRO
parameter becomes sharper, reaching a larger equilib-
5804
rium value. Just outside the transition line, inside the
disordered region, the LRO parameter vanishes.

3. There is good agreement between these results
and the most recent experimental transmission elec-
tron microscopy work.

Acknowledgement
The present research was financially supported by
a grant-in-aid for Scientific Research from the Minis-
try of Education, Science and Culture of Japan, for
which the authors are very grateful.

References
1. C. TAMMAN, Z. Anorg. Allg. Chem. 107 (1919) 1.
2. L. GUTTMAN, Solid State Phys. 3 (1956) 145.
3. S. M. ALLEN and J. W. CAHN, Acta. Metall. 23 (1975) 1017.
4. H. KUBO and C. M. WAYMAN, ibid. 28 (1980) 395.
5. S. V. SEMENOVSKAYA, Phys. Status Solidi B 64 (1974) 291.
6. W. A. SOFFA and D. E. LAUGHLIN, Acta Metall. 37 (1989)

3019.
7. H. MATSUDA, H. KUROKI and T. EGUCHI, ¹rans. Jpn

Inst. Metals 12 (1972) 390.
8. G. H. VINEYARD, Phys. Rev. 102 (1956) 981.
9. K. KAWASAKI, ibid. 145 (1966) 224.

10. J . D. GUNTON, M. S. MIGUEL and P. S. SAHNI, in ‘‘Phase
Transformations and Critical Phenomena’’, edited by J.
Leowitz, Vol. 8 (Academic Press, London 1983) p. 267.

11. H. SATO and R. KIKUCHI, Acta Metall. 24 (1976) 797.
12. K. GSCHWEND, H. SATO and R. KIKUCHI, Chem. Phys.

69 (1978) 5006.
13. B. FULTZ, in ‘‘Statics and Dynamics of Alloy Phase Trans-

formations’’, edited by P. E. A. Turchi and A. Gonis (Plenum
Press, New York, 1994) p. 669

14. L. Q. CHEN and J. A. SIMMONS, Acta Metall. Mater. 42
(1994) 2943.

15. A. LOISEAU, C. RICOLLEAU, L. POTEZ and F. DUCAS-

TELLE, in ‘‘SolidPSolid Phase Transformations’’, edited
by W. C. Johnson, J. M. Howe, D. E. Laughlin and W. A.
Soffa (Minerals, Metals and Materials Society, Warrendale,
Pennsylvania, 1994) p. 385.

16. A. G. KHACHATURYAN, in ‘‘Progress in Materials
Science’’, edited by B. Chalmers, J. W. Christian and T. B.
Massalski, Vol. 22 (Pergmon Press, Oxford, England 1978).

17. L. Q. CHEN and A. G. KHACHATURYAN, Scripta Metall.
25 (1991) 61.

18. L. Q. CHEN and A. G. KHACHATURYAN, Acta Metall.
Mater. 39 (1991) 2533.

19. T. KOYAMA, T. MIYAZAKI and A. M. MEBED, Metall.
Mater. ¹rans. A 26 (1995) 2617.

20. J . W. CHRISTIAN, ‘‘The theory of Transformation in Metals
and Alloys’’, 2nd Edn, Part I (Pergamon Press, Oxford, Eng-
land 1981) p. 206.

21. L. Q. CHEN and A. G. KHACHATURYAN, Phys. Rev. ¸ett.
70 (1993) 1477.

22. Y. WANG, L. Q. CHEN and A. G. KHACHATURYAN, Acta
Metall. Mater. 41 (1993) 279.

23. S. KOBAYASHI, T. KOYAMA and T. MIYAZAKI, in ‘‘Pro-
ceedings of Asian Conference of X-ray and Related Investiga-
tions (ACXRI 96)’’ (Ipoh, Malaysia, 1986) p. 21.

24. W. L. BRAGG, Proc. Phys. Soc. 52 (1940) 105.
25. H. YAMAUCHI, Scripta Metall. 7 (1973) 109.

Received 23 February 1996
and accepted 17 April 1997
.


	1. Introduction
	2. Calculation method
	3. Simulation technique
	4. Results and discussion
	5. Conclusions
	Acknowledgement
	References

